MDS 將會為您直接計算個體間多變量(或稱多屬性)的距離。MDS 對所分析的相 異性資料種類非常具有彈性,可因其衡量尺度、形狀和受限制而有不同的資料類 別,分析時並可包括任何型態的遺漏資料。此外,MDS 亦可處理來自多位評估者 或受試者的資料。

如果資料是相異性資料,則所有相異性都應爲數值,並以相同的計量單位衡量。如果資料是多變量資料,那麼變數可以是數值、個數或二元資料。變數尺度是一項重要問題,因爲尺度的差異會影響差異性的計算公式。如果變數尺度差異極大(例如,一個變數以元爲單位來衡量,另一個以年爲單位),那就應考慮將它們標準化(可使用 MDS 程序來自動執行)。MDS 對於相異性衡量的方式與第十章的集群分析類似,在此不再贅述。

# 第二節 SPSS 的多元尺度法

圖 11-1 台灣 12 個城市距離的排序矩陣

MDS 分析是以距離矩陣(即相異性矩陣,Distance Matrix)為運算資料,其可 以直接讀取相異性矩陣,或由原始資料計算並轉換成相異性矩陣,並產生原始與 轉換後的資料矩陣、最佳調整的資料矩陣、S應力(Young's)、應力(Kruskal's)、 RSQ、個體座標(Stimulus Coordinates)、個體空間構形圖、線性適合度散佈圖等。

在此以台灣 12 個城市的飛行距離如第十章圖 10-18,排序後進行多元尺度法, 如圖 11-1 所示。因為有 12 個城市,因此共有 66 個配對。在本範例中,並未輸入 實際距離而是距離的排序,例如台北與基隆的距離最近,故排序為 1,恆春與枋寮 排序第二近、高雄與台南的距離排序第三近,最遠的為基隆到恆春,依序類推。 故本範例輸入非計量的順序尺度,但將產生一幅比率尺度的計量「台灣地圖」。

|    |    |        |    | -  |    |    |    |    |    |    |    |    |    |
|----|----|--------|----|----|----|----|----|----|----|----|----|----|----|
|    | 地點 | - 蚕陵 - | 台北 | 新竹 | 台中 | 嘉義 | 台南 | 高雄 | 杤寮 | 恆春 | 台東 | 花蓮 | 棄裡 |
| 1  | 基隆 | 0      |    |    |    |    |    |    |    |    |    |    |    |
| 2  | 台北 | 1      | 0  |    |    |    |    |    |    |    |    |    |    |
| 3  | 新竹 | 15     | 6  | 0  |    |    |    |    |    |    |    |    |    |
| 4  | 台中 | 33     | 27 | 10 | 0  |    |    |    |    |    |    |    |    |
| 5  | 嘉義 | 44     | 40 | 30 | 12 | 0  |    |    |    |    |    |    |    |
| 6  | 台南 | 55     | 50 | 42 | 31 | 6  | 0  |    |    |    |    |    |    |
| 7  | 高雄 | 59     | 56 | 48 | 36 | 20 | 3  | 0  |    |    |    |    |    |
| 8  | 枋寮 | 61     | 60 | 53 | 38 | 27 | 14 | 4  | 0  |    |    |    |    |
| 9  | 恆春 | 63     | 62 | 57 | 46 | 35 | 25 | 12 | 2  | 0  |    |    |    |
| 10 | 台東 | 51     | 49 | 44 | 34 | 22 | 21 | 16 | 9  | 17 | 0  |    |    |
| 11 | 花蓮 | 29     | 24 | 23 | 17 | 30 | 37 | 38 | 40 | 45 | 32 | 0  |    |
| 12 | 蘇澳 | 8      | 6  | 19 | 25 | 38 | 47 | 52 | 54 | 57 | 42 | 11 | 0  |

#### 一、操作步驟

選擇分析(A)→比例(A)→多元尺度分析(ALSCAL)(M),會彈出如圖 11-2 的 對話框,將欲進行 MDS 的 12 個城市名稱,從左邊的變數框選定後,移到 Variables (V)框中。如果除了要 SPSS 計算出距離外,還要使用重複或個別差異模式,就可 以計算輸入變數的個別矩陣(I)(Individual Matrices for),由於這是相當複雜的步 驟,故本書不作進一步討論。

圖 11-2 Multidimensional Scaling 對話框

| 🍓 多元尺度分析                                                                         |                                                     | ×              |
|----------------------------------------------------------------------------------|-----------------------------------------------------|----------------|
|                                                                                  | 裝數(V): ● 基隆 ● 台北 ● 台北 ● 新竹 ● 台中 ● 高売 ■ 此項目的個別矩陣()): | 棋型(Ш)<br>選項(Q) |
| ◎ 資料為距離(A)<br>形狀(S)。正方形射額(S)                                                     |                                                     |                |
| <ul> <li>④ 從資料建立距離(C)</li> <li>測量(E) Euclidean 距離</li> <li>確定 贴上(P) 1</li> </ul> | t读(R) 取消 說明                                         |                |

在此對話框中,有三個主要的選擇框,包括距離框、模型框與選項框。其中, 距離框又分為資料為距離(<u>A</u>)與從資料建立距離(<u>C</u>)兩種選項。茲分述如下:

### (一) 資料為距離 (Data are distances)

如果工作資料檔案為相異性矩陣,代表一組物件之內的距離或兩組物件之間 的距離,則選擇資料為歐基里得直線距離;此為 MDS 預設選項。

您可按一下資料形狀(<u>S</u>)(Shape)來指出距離矩陣的類型。在距離框中,您必 須勾選資料為距離(<u>A</u>)(資料為歐基里得直線距離)這個選項,然後點擊形狀(<u>S</u>) 按鈕,即會彈出如圖 11-3 的子對話框。

在資料形狀(Shape)框中界定輸入距離矩陣的格式,必須指定資料矩陣的形狀,以便得到正確的結果。在此必須注意,如果模型對話框指定了列的Conditionality 條件性,就無法選取正方形對稱(<u>S</u>)。其有下列選項:

1. 正方形對稱(S) (Square Symmetric):顯示資料是對角線上下對稱的矩陣,矩陣



| 参元尺度分析:資料形狀          |
|----------------------|
| ◎ 正方形對稱(S)           |
| ◎ 正方形非對稱( <u>A</u> ) |
| ◎ 矩形( <u>R</u> )     |
| 列數( <u>N</u> ):      |
| 繼續( <u>C</u> ) 取消 說明 |

圖 11-3 多元尺度分析:資料形狀子對話框

中對角線的值可寫可不寫, MDS 只要讀取左下角即可。

- 2. 正方形非對稱(<u>A</u>)(Square Asymmetric):顯示資料是對角線左下和右上不對稱的 矩陣。雖然此時行與列均代表相同的個體,但 E<sub>ii</sub>與 E<sub>ii</sub>的值並不相同。
- 3. 矩形(B)(Rectangular):由許多距離矩陣組合而成,可用來考慮每個受試者(Subject)之個別差異,為一種三維矩陣,有時需界定矩陣的列數(N)。

因本範例的資料內容為12個城市的距離排序,屬於相異性資料,故於距離框中,選擇資料為距離(<u>A</u>)及預設的正方形對稱(<u>S</u>)。

(二)從資料建立距離(Create distance from data)

MDS 法乃使用相異性資料來找出多元尺度法的解答,但如果資料是多變量資料(衡量變數的數值),就必須先建立相異性資料,以便計算出多元尺度法的解答。 此時就可利用此功能,先將工作檔案轉換為歐基里得直線距離。

多變量資料通常為長方形資料矩陣(因觀察値個數與變數個數不相等),且每 一個變數的衡量尺度可能也不相等,若多變量資料為計量尺度或所有變數均為二 分變數時,可採 Euclidean 或 Binary Euclidean 距離來計算多變量的相異性矩陣。

在距離框中,勾選從資料建立距離(C)這個選項,然後點擊測量(E)按鈕,會彈 出如圖 11-4 的子對話框。

在測量框中,可指定分析所需的相異性量數,關於此請參閱第十章的詳細介 紹。在轉換值框的操作法與第十章集群分析的操作方式一樣,在此不再贅述。此 外,還可以選擇標準化的方式,其選項有依變數(<u>V</u>)(By Variable)或依據觀察値 (<u>C</u>)(By Case)。建立距離矩陣框可選擇分析的單位。其選項包括變數之間(<u>L</u>)或觀 察値之間(<u>E</u>)。茲說明如下:

 變數之間(Between Variables):此為 SPSS 的預設方法,進行分析時會以變數為 個體點,故欲產生空間圖的每個個體點應該列在每個 Column 上。通常在原始

| ◎ 區間( <u>N</u> ): | Euclidean 距離   |                  |  |  |
|-------------------|----------------|------------------|--|--|
|                   | 冪(₩): 2 ▼ 根(ℝ) | 2 🔻              |  |  |
| ◎ 計數( <u>T</u> ): | 卡方測量           | 7                |  |  |
| ◎ 二元( <u>B</u> ): | Euclidean 距離   |                  |  |  |
|                   | 出現(巴): 1 未出    | 現( <u>A</u> ): 0 |  |  |
| 轉換值               | 建              | 立距離矩陣 —          |  |  |
| 標準化( <u>S</u> ):  | <b>#</b> •     | ) 變數之間(L)        |  |  |
|                   | ◎ 應變數(⊻)       | )觀察值之間(日         |  |  |
|                   | ◎ 依觀察值(C)      |                  |  |  |

圖 11-4 多元尺度分析:從資料建立測量子對話框

資料檔中, Row 為欲分析的個體 Cases、Column 為 Variables, 故進行 MDS 時, 工作資料檔需先以 Transpose 程序進行轉換,將 Column 變成 Cases、Row 變為 Variables, 如此才可以選擇 Column 的分析個體到 Variables 框中。

2. 觀察値之間(Between Cases):若選擇此項,進行分析時會以觀察値為個體點, 則工作資料檔不需先 Transpose,但此時欲分析的個體因無法進入 Variables 框 中,將造成 MDS 輸出結果會以 VAR1、VAR2、VAR3...等代號代替原來個體, 而造成閱讀上的不便,故還是建議選擇 Between Variables 較佳。

## (三) 模式 (Model)

點擊圖 11-2 對話框中的模型(<u>M</u>)按鈕,會彈出如圖 11-5 的子對話框。

多元尺度法模式的估計正確與否,取決於資料的水準及模式本身。

在測量層次(Level of Measurement,或稱衡量水準)框中,可指定資料的水準, 其選項包括次序(Q)、區間(I)或比例(R)。如果您的資料是順序的,選取「將連結的 觀察値解除連結」(U)(Untie Tied Observations)會要求將他們視為連續的變數, 以便能最佳化地解決同分(指不同觀察値但具有相同的數値)問題。MDS 便會強 迫給相同順序者不同的順序,當要計算非計量 MDS 分析時即選擇此功能。多元尺 度法程序比較沒有分配上的假設,但一定要選取合適的衡量水準,以確保結果係 經過正確的計算來獲得。 圖 11-5 多元尺度分析:模型子對話框

| ⑤ 多元尺度分析:模型                                                                                                                         | ×                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 測量層次<br><ul> <li>次序(Q):</li> <li>將連結的觀察解除連結(U)</li> <li>區間(I)</li> <li>比例(R)</li> </ul>                                             | 條件性 ● 矩陣(M) ● 列(M) ◎ 無條件(C)  维度 最小值(N): 1 最大值(X): 2 |
| 調整模型<br><ul> <li>● Euclidean 距離(E)</li> <li>● 個別差異 Euclidean 距離(D):</li> <li>■ 允許員的受試者加權(A)</li> <li>         繼續(C)     </li> </ul> | ) 取消 說明                                             |

在條件性(Conditionality)框中,有三種選項,矩陣(M)條件時,表矩陣裡的各個儲存格可以互相比較,整個矩陣中所有資料單位或意義均相同。列(W)條件時, 矩陣裡指定的橫列各個儲存格可以互相比較,不過此一選項只有在非對稱及長方 形矩陣才可選用。無條件限制(C)時,MDS即可能將矩陣裡某一儲存格與其他各個 儲存格互相比較,而不受任何限制。

在**維度**(Dimensions)框中,可指定尺度法解答的維度範圍,例如:2~6個維度對維度範圍內的每項數字計算出一項解答,對單一解答,請將最小值(N)及最大值(X)均指定為相同之數字。

在調整模型(Scaling Model)框中,可指定尺度運作所依循之假設。其有二種 選項,Euclidean距離(E)模型最為常見,乃為系統中的預設模式。個別差異 Euclidean 距離(D)可允許個別受測者間的差異。事實上,MDS 除了以上兩種模式外,尙有 ASCLA、AINDS、GEMSCAL 模式,SPSS 語法可使用這三項額外的模式。

在本範例,當點擊模型(M)按鈕後,因距離排序為順序尺度,故於測量層次框 中選擇次序(Q),在條件性框中選擇預設的矩陣(M)選項,因整個矩陣中所有資料 皆為排序資料,故單位均相同且可以互相比較。在本例中,維度框中最大與最小 的維度均分別為1與2,所以 MDS 會列出一維與二個維度的解答。因本例題只有 一個資料矩陣,屬於古典的 MDS 分析,故在調整模型框採用 Euclidean 距離(E)。

(四)選項(Options)

點擊圖 11-2 對話框中的選項(Q)按鈕,會彈出如圖 11-6 的子對話框。

|                                                     | _ |
|-----------------------------------------------------|---|
| ● 多元尺度分析:選項 ×                                       |   |
| 願示<br>▼ 群組圖形(G) ▼ 個別受試者圖形(I) ▼ 資料矩陣(D) ▼ 模型與選項摘要(M) |   |
| 準則                                                  |   |
| S應力收斂(S): 0.001                                     |   |
| S應力值下限(N): 0.005                                    |   |
| 反覆運算次數上限(X): 30                                     |   |
| 處理距離小於(I): 0 作為遺漏                                   |   |
| 繼續(C) 取消 說明                                         |   |
|                                                     |   |

圖 11-6 多元尺度分析: 選項子對話框

在顯示 (Display) 框中可選取不同類型之輸出。其有下列選項:

- 1. **群組圖形(G)**:可輸出組別的個體空間圖,及資料與模式間線性適合度散佈圖 (Scatterplot of Linear Fit)。因 MDS 主要即是產生空間圖,故此選項最好要選。
- 2. 個別受試者圖形(!) (Individual Subjects Plots):可對矩陣限制資料,輸出每位受 測者資料轉換的散佈圖;而其他量尺資料則只輸出群組圖形。
- 3. 資料矩陣(D) (Data Matrix): 可列出 MDS 原始與尺度化後的相異性資料矩陣。

4. 模型與選項摘要(M) (Model and Options Summary)。

在準則(Criteria)框可決定何時應停止疊代、界定收斂標準,其均可使用預設值。該框中有三種選項。S應力收斂值(S)可設定收斂的最小標準,預設值為.001。最小S應力值(N)可設定壓力係數增進的最小標準,預設值為.005。反覆運算次數上限(X)可設定最大疊代次數的限制,預設值為30次。

**處理距離小於(<u>T</u>)**,預設當相異性小於 0 則爲遺漏值,使用者可自行設定遺漏 值的切割點;若輸入 3,則表示小於 3 的值均視爲遺漏值。

在本範例中,顯示的四個輸出內容皆勾選;準則用系統預設值,遺漏值的切 割點則用系統預設值0。

(五) MDS 語法

按貼上(P)按鈕,就可得到本範例的 MDS 語法如下:

ALSCAL / VARIABLES= 基隆 台北 新竹 台中 嘉義 台南 高雄 枋寮 恆春 台東 花蓮 蘇澳

/SHAPE=SYMMETRIC /LEVEL=ORDINAL

/CONDITION=MATRIX /MODEL=EUCLID

/CRITERIA=CONVERGE(.001) STRESSMIN(.005) ITER(30) CUTOFF(0)

DIMENS(1,2)

/PLOT=DEFAULT /PRINT=DATA HEADER .

## 二、結果輸出

底下分成幾個小段,針對 MDS 二維的輸出結果,介紹其意義。

(一) MDS 結果彙總

Alscal Procedure Options

Data Options-

Output Options-

| Number of Rows (Observations/Matrix). | 12            | Job Option Header                    | Printed     |
|---------------------------------------|---------------|--------------------------------------|-------------|
| Number of Columns (Variables)         | 12            | Data Matrices                        | Printed     |
| Number of Matrices                    | 1             | Configurations and Transformations . | Plotted     |
| Measurement Level                     | Ordinal       | Output Dataset                       | Not Created |
| Data Matrix Shape                     | Symmetric     | Initial Stimulus Coordinates         | Computed    |
| Туре                                  | Dissimilarity |                                      |             |
| Approach to Ties                      | Leave Tied    | Algorithmic Options-                 |             |
| Conditionality                        | Matrix        |                                      |             |
| Data Cutoff at                        | .000000       | Maximum Iterations                   | 30          |
|                                       |               | Convergence iterion                  | .00100      |
| Model Options-                        |               | Minimum S-stress                     | .00500      |
|                                       |               | Missing Data Estimated by            | Ulbounds    |
| Model                                 | Euclid        | Tiestore                             | 66          |
| Maximum Dimensionality                | 2             |                                      |             |
| Minimum Dimensionality                | 2             |                                      |             |
| Negative Weights                      | Not Permitted |                                      |             |

以上內容是在選項框中的顯示框裡勾選模型與選項摘要的輸出結果。由此摘要,可很快地瞭解 MDS 分析所用的資料性質、分析模式、輸出結果的形式及演算法的規則。